
1 
 

Matching the Turc-Budyko functions with the complementary 
evaporation relationship: consequences for the drying power of the 
air and the Priestley-Taylor coefficient  
Jean-Paul Lhomme1, Roger Moussa2 
1IRD, UMR LISAH, 2 Place Viala, 34060 Montpellier, France 5 
2INRA, UMR LISAH, 2 Place Viala, 34060 Montpellier, France 

Correspondence to: Roger Moussa (moussa@supagro.inra.fr) 

Abstract. The Turc-Budyko functions B1(Φp) are dimensionless relationships relating the ratio E/P (actual evaporation over 

precipitation) to the aridity index Φp = Ep/P (potential evaporation over precipitation). They are valid on long timescales at 

catchment scale with Ep generally defined by Penman’s equation. The complementary evaporation (CE) relationship 10 

stipulates that a decreasing actual evaporation enhances potential evaporation through the drying power of the air which 

becomes higher. The Turc-Mezentsev function with its shape parameter λ is chosen as example among various Turc-Budyko 

curves and the CE relationship is implemented in the form of the Advection-Aridity model. First, we show that there is a 

functional dependence between the Turc-Budyko curve and the drying power of the air. Then, we examine the case where 

potential evaporation E0 is calculated by means of the Priestley-Taylor equation with a varying coefficient α0. Introducing 15 

the CE relationship into the Turc-Budyko function leads to a new transcendental form of the Turc-Budyko function B1’(Φ0) 

linking E/P to Φ0 = E0/P. The two functions B1(Φp) and B1’(Φ0) are equivalent only if α0 has a specified value which is 

determined. The functional relationship between the Priestley-Taylor coefficient, the Turc-Mezentsev shape parameter and 

the aridity index is specified and analysed.   

 20 

1 Introduction 

The Turc-Budyko curves are analytical formulations of the functional dependence of actual evaporation E on moisture 

availability represented by precipitation P and atmospheric water demand represented by potential evaporation Ep. They are 

valid on long timescales at catchment scale. More precisely, the Turc-Budyko relationships relate the evaporation fraction 

E/P to an aridity index defined as Φp = Ep/P. Empirical formulations have been obtained by simple fitting to observed values 25 

(Turc, 1954; Budyko, 1974). Analytical derivations have also been developed (Mezentsev, 1955; Fu, 1981; Zhang et al., 

2004; Yang et al., 2008). The Turc-Budyko relationships have been extensively used in the scientific literature up to now and 

interpreted with physical models (Gerrits et al., 2009) or thermodynamic approaches (Wang et al., 20015). For some of the 

formulations the shape of the curve is determined by a parameter linked to catchment characteristics in terms of vegetation 
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and soil water storage (Li et al., 2013; Yang et al., 2007). The most representative functions E/P = B(Φp) are shown in Table 

1 (see Lebecherel et al. (2013) for an historical overview) and one of them (Turc-Mezentsev) is represented in Fig. 1 for 

different values of the shape parameter. Steady-state conditions are assumed, considering that all the water consumed by 

evaporation E comes from the precipitation P and that the change in catchment water storage is nil: P-E = Q with Q the total 

runoff. All the Turc-Budyko functions should necessarily verify the following conditions: (i) E = 0 if P = 0, (ii) E ⩽ P 5 

(water limit), (iii) E⩽ Ep (energy limit), (iv) E → Ep if P→ +∞. These conditions define a physical domain where the Turc-

Budyko curves are constrained (Fig. 1). It is interesting to note also that any Turc-Budyko function B1 relating E/P to Φp can 

be transformed into a corresponding function B2 relating E/Ep to Φp
-1 = P/Ep (Zhang et al., 2004; Yang et al., 2008). Indeed 

we have    

�
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Potential evaporation, which establishes an upper limit to the evaporation process in a given environment, is generally given 

by a Penman-type equation (Lhomme, 1997a). It is the sum of two terms: a first term depending on the radiation load Rn and 

a second term involving the drying power of the ambient atmosphere Ea 

 �
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��� �� .            (2) 

In Eq. (2) γ is the psychrometric constant and ∆ the slope of the saturated vapour pressure curve at air temperature. Ea 15 

represents the capacity of the ambient air to extract water from the surface. It is an increasing function of the vapour pressure 

deficit of the air Da and of wind speed u through a wind function f(u): Ea = f(u) Da. Contrary to precipitation, potential 

evaporation Ep is not a forcing variable independent of the surface. Ep is in fact coupled to E by means of a functional 

relationship known as the complementary evaporation relationship (Bouchet, 1963), which stipulates that potential 

evaporation increases when actual evaporation decreases. This complementary behaviour is made through the drying power 20 

of the air Ea: a decreasing actual evaporation makes the ambient air drier, which enhances Ea and thus potential evaporation. 

Eq. (2) takes into account this complementary behaviour through the drying power Ea, which adjusts itself to the conditions 

generated by the rate of actual evaporation. It is also the case, for instance, when Ep is calculated as a function of pan 

evaporation.  

However, in most of Turc-Budyko functions encountered in the literature, Ep is not accurately defined. Choudhury (1999, p. 25 

100) noted that “varied methods were used to calculate Ep, and these methods can give substantially different results”. Many 

formulae, in fact, can be used to calculate the potential rate of evaporation, each one involving different weather variables 

and yielding different values. Some formulae are based upon temperature alone, others on temperature and radiation  

(Carmona et al., 2016). In the present study we examine the case where Ep is estimated via a Priestley-Taylor type equation 

(Priestley and Taylor, 1978) with a variable coefficient α0: 30 
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Soil heat flux is neglected on large timescale. The coefficient α0, generally named Priestley-Taylor coefficient, is supposed to 

increase with climate aridity, from around 1.25 up to 1.75 (Shuttleworth, 2012), which can be seen as a direct consequence 

of the complementary evaporation relationship. Lhomme (1997b) made a thorough examination of the coefficient α0 by 

means of a convective boundary layer model. 

In the present paper, the behaviour of the drying power of the air Ea will be examined, together with its physical boundaries, 5 

in relation to the actual rate of evaporation predicted by the Turc-Budyko functions. It will be also shown that the coefficient 

α0 has a functional relationship with the shape parameter of the Turc-Budyko curve and the aridity index. The standpoint 

used in this study differs from various previous attempts undertaken in the literature to examine from different perspectives 

the links between Bouchet and Turc-Budyko relationships, investigating their apparent contradictory behaviour. For 

example, Zhang et al. (2004) established a parallel between the assumptions underlying Fu’s equation and the 10 

complementary relationship. In a study by Yang et al. (2006) concerning numerous catchments in China, the consistency 

between Bouchet, Penman and Turc-Budyko hypotheses was theoretically and empirically explained. Lintner et al. (2015) 

examined the Budyko and complementary relationships using an idealized prototype representing the physics of large-scale 

land-atmosphere coupling in order to evaluate the anthropogenic influences. Zhou et al. (2015) developed a complementary 

relationship for partial elasticities to generate Turc-Budyko functions, their relationship fundamentally differing from 15 

Bouchet’s one. Carmona et al. (2016) proposed a power law to overcome a physical inconsistency of the Budyko curve in 

humid environments, this new scaling approach implicitly incorporating the complementary evaporation relationship.  

The paper is organized as follows. First, the basic equations used in the development are detailed: the choice of a particular 

Turc-Budyko function is discussed and the complementary evaporation relationship, implemented through the Advection-

Aridity model (Brutsaert and Stricker, 1979) is presented. Second, the feasible domain of the drying power of the air Ea is 20 

examined, together with the correspondence between Ea and actual evaporation in dimensionless form. Third, the functional 

relationship linking the Priestley-Taylor coefficient α0 to the shape parameter of the Turc-Budyko function and the aridity 

index is inferred. In the following development, “Turc-Budyko” will be abbreviated in TB and “complementary 

evaporation” in CE. 

2 Basic equations 25 

Among the TB functions given in Table 1, one particular form is retained in our study: the one initially obtained by Turc 

(1954) and Mezentsev (1955) through empirical considerations and then analytically derived by Yang et al. (2008) through 

the resolution of a Pfaffian differential equation with particular boundary conditions. Three reasons guided this choice: (i) 

the function is one of the most commonly used; (ii) it involves a model parameter λ which allows it to evolve within the 

Turc-Budyko framework; (iii) it has a notable simple mathematical property expressed as: F(1/x) = F(x)/x. This last property 30 

means that the same mathematical expression is valid for B1 and B2 (Eq. 1). The so-called Turc-Mezentsev function is 

expressed as:   
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It is written here with an exponent noted λ instead of the n generally used (Yang et al., 2009). The slope of the curve for Φp 

= 0 is 1. When the model parameter λ increases from 0 to +∞, the curves grow from the x-axis (zero evaporation) to an 

upper limit (water and energy limits), as shown in Fig. 1. In other words, when λ increases, actual evaporation gets closer to 

its maximum rate and when Φp tends to infinite E/P tends to 1. The intrinsic property of Eq. (4) allows it to be transformed 5 

into a similar equation with E/Ep replacing E/P and Φp
-1 replacing Φp (see Figs. 2a, b): 

�
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Fu (1981) and Zhang et al. (2004) derived a very similar equation with a shape parameter ω (see Table 1) and Yang et al. 

(2008) established a simple linear relationship between the two parameters (ω = λ + 0.72). In the rest of the paper, the 

development and calculations are made with the Turc-Mezentsev formulation. However, similar (but less straightforward) 10 

results can be obtained with the Fu-Zhang formulation (see the supplementary material S4).  

The complementary evaporation (CE) relationship expresses that actual evaporation E and potential evaporation Ep are 

related in a complementary way following 

� + &�	 = (1 + &)�' .            (6) 

Ew is the wet environment evaporation, which occurs when E = Ep and b is a proportionality coefficient (Han et al., 2012). 15 

Various forms of the CE relationship exist in the literature (Xu et al., 2005). In our analysis, it is interpreted in the widely 

accepted framework of the Advection-Aridity model (Brutsaert and Stricker, 1979), where b = 1, potential evaporation Ep is 

calculated using Penman’s equation (Eq. 2) and Ew is expressed by the Priestley-Taylor equation 

	�' = �' �
�����		 ,            (7) 

where the coefficient αw has an estimated and fixed value of 1.26. Ew only depends on net radiation and air temperature 20 

through ∆. As already said in the introduction, the complementarity between E and Ep is essentially made through the drying 

power of the air Ea: a decrease in regional actual evaporation, consecutive to a decrease in water availability, generates a 

drier air, which enhances Ea and thus Ep. The fact that E0 (Eq. 3), as a substitute for Ep, should also verify the CE relationship 

implies that: αw ⩽	α0 ⩽	2αw. 

3 Feasible domain of the drying power of the air and correspondence with the evaporation rate 25 

As a consequence of the CE relationship, the drying power of the air Ea is linked to the evaporation rate. Its feasible domain 

is examined hereafter by determining its bounding frontiers and its behaviour is assessed as a function of the evaporation 

rate. Inverting Eq. (2) and replacing its radiative term by Ew (Eq. 7) yields to 

�� = )1 + �
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Taking into account the CE relationship (Eq. 6 with b=1) and scaling by Ep leads to 
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Inserting Eq. (5) into Eq. (9) gives 
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This means that the ratio Ea/Ep can be also expressed and drawn as a function of Φp
-1 like the TB functions. Given that there 5 

is a water limit expressed by 0 < E < P and an energy limit expressed by 0 < E < Ep, the function Ea/Ep = D(Φp
-1) should 

meet the following three conditions:  

(i) E > 0 implies that Ea < Ea,x given by: 

�.,7
�8 = (1 + �

�) )1 − �
�-,* .            (11) 

(ii)  E < P implies that Ea > Ea,n1 given by: 10 
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(iii)  E < Ep implies that Ea > Ea,n2 given by: 

�.,9:
�� = )1 + �

�* )1 − �
-,*	.           (13) 

With Ep as scaling parameter, the feasible domain of Ea/Ep in the dimensionless space (Φp
-1 = P/Ep, Ea/Ep) is shown in Fig. 

2c: when evaporation is nil, Ea = Ea,x is maximum (upper boundary in Fig. 2c); when evaporation is maximal, Ea is minimal 15 

(lower boundary in Fig. 2c). The maximum dimensionless difference D*  between the upper boundary (Ea,x/Ep) and the lower 

boundary is obtained by subtracting Eq. (13) from Eq. (11): 

1∗ = �
�-, )1 + �

�* .            (14) 

There is a correspondence between the TB curves E/P = B1(Φp) and E/EP =B2(Φp
-1) drawn into Figs. 2a, b and the one of 

Ea/Ep=  D(Φp
-1) drawn in Fig. 2c. Figs. 2a, b, c show this correspondence for a particular case defined by λ = 1 and T = 15°C 20 

(∆ = 110 Pa °C-1). When the TB curves reach their upper limit, i.e. in very evaporative environments, the corresponding 

curve Ea/Ep reaches its lower limit. Conversely, when the TB curves reach their lower limit, i.e. the x-axis (no-evaporative 

environment), the corresponding Ea/Ep curve reaches its upper limit. 

It is interesting to note that the parameter λ of the Turc-Mezentsev function has a clear graphical expression. Denoting by d* 

the maximum difference between the Turc-Mezentsev curve and its upper limit (Fig. 2a), this difference (0 < d* <1) 25 

obviously occurring for Φp = P/Ep = 1, we have from Eq. (4) 

<∗ = 1 − 2
�$ ,             (15) 

which leads to 
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When d* varies from 1 to 0, the parameter λ varies from 0 to +∞. The value corresponding to d* in the graphical 

representation of Ea/Ep= D(Φp
-1) (Fig. 2c) is the difference δ*  between the Ea/Ep curve (Eq. 10) and its lower boundary (Eq. 

13) for P/Ep = 1. It is given by 

B∗ = )1 + �
�* �

�-, )1 − 2
�
$* = 1∗<∗ .          (17) 5 

This simple relationship shows that the dimensionless differences d* and δ*  vary simultaneously in the same direction with a 

proportionality coefficient equal to D* , whose value is close to 1. It is a direct consequence of the CE relationship. When d* 

decreases, i.e. the dimensionless evaporation rate (E/P or E/Ep) increases, δ*  decreases, i.e. the drying power of the air Ea 

decreases: for a constant wind speed, the air becomes wetter.  

In the next section, another consequence of the CE relationship will be examined in relation to the value of the Priestley-10 

Taylor coefficient and its dependence on the rate of actual evaporation. 

4 Linking the Priestley-Taylor coefficient to the TB functions  

Using the CE relationship as a basis, this section examines the link existing between the Priestley-Taylor coefficient α0 

defined by Eq. (3) and the Turc-Mezentsev shape parameter λ (Eq. 4). Combining Eqs. (3), (6) and (7) potential evaporation 

can be written as 15 

�	 = 2 -,
-C �� − � .            (18) 

Substituting Ep in Eq. (4) by its value given by Eq. (18) and putting Φ0 = E0/P gives 

�	
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Eq. (19) can be rewritten as 
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Eq. (20) represents a transcendental form of the Turc-Mezentsev function (Eq. 4) issued from the complementary 

relationship and written with Φ0 = E0/P instead of Φp = Ep/P. Calling B1’  this new function E/P = B1’(Φ0), Eq. (20) 

represents in fact its inverse function Φ0 = B1’
-1(E/P). The function E/P = B1’(Φ0) has properties similar to the Turc-

Mezentsev function (Eq. 4) (see the demonstrations in the supplementary materials S1): i) when Φ0 tends to zero, B1’(Φ0) 

tends to zero with a slope equal to αw/α0 (⩽	 1); ii) when Φ0 tends to infinite, E/P tends to 1. A transcendental form of Eq. (5), 25 

called B2’ , can be obtained by expressing E/E0 as a function of Φ0
-1 = P/E0 

��
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� ) �
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Function B2’  has the following properties at its limits (see the supplementary materials S2): i) when Φ0
-1

 tends to zero, 

B2’(Φ0
-1) tends to zero with a slope equal to 1; ii) when Φ0

-1
 tends to infinite, E/E0 tends to αw/α0 (⩽ 1).  

For a given value of the exponent λ, a fixed value of α0 and with αw = 1.26, the relationship between E/P and Φ0 (or between 

E/E0 and Φ0
-1) can be obtained by using numerical methods to resolve Eqs. (20) and (21). Similar calculations, more or less 

complicated, could be made with any Turc-Budyko function. These results show that a Turc-Mezentsev curve (or any TB 5 

curve) generates a different curve when potential evaporation is given by E0 instead of Ep. This new curve is represented in 

Fig. 3 by comparison with the original one for two values of the shape parameter λ (0.5 and 2) assuming α0 = αw = 1.26. The 

new curve has a form similar to the original one, with the same limits at 0 and +∞, but it is higher or lower depending on the 

value of α0. It is worthwhile noting also that B2’  is different from B1’ , contrary to B2 (Eq. 5) which is identical to B1 (Eq. 4). 

Nevertheless the two curves are very close, as shown in Fig. 4, and it is easy to verify they have the same value for Φ0 = Φ0
-10 

1=1. 

We have now two sets of TB functions: B’1 and B’2 (Eqs. 20 and 21) involving Φ0 = E0/P and their corresponding original 

formulations B1 and B2 (Eqs. 4 and 5) as a function of Φp = Ep/P. The question now is to find out the value of α0 which 

allows B’1 to be equivalent (or the closest) to the original Turc-Mezentsev function B1. Both equations expressing E/P as a 

function of an aridity index Φ (Φp or Φ0), the expression of α0 can be inferred by matching Eq. (20) and Eq. (4): for a given 15 

value of the aridity index Φ, B1 and B1’  should give the same value of E/P. This leads to 

�� = �-,
������$���/$  .            (22) 

The same relationship (Eq. 22) is obtained by matching B’2 with B2. It is worthwhile noting that when α0 is expressed by Eq. 

(22) and Φ0 tends to zero (or Φ0
-1 tends to infinite), αw/α0 in Eqs. (20) and (21) tends to 1. This means that these equations 

have the same limits as their original equations (Eqs. 4 and 5). Putting the value of α0 defined by Eq. (22) into B1’  and B2’  20 

(Eqs. 20 and 21) leads to new transcendental equations linking E/P and Φ0 (or E/E0 and Φ0
-1) which are exactly equivalent to 

the original Turc-Mezentsev functions (Eqs. 4 and 5). Function B1’  transforms into 

�

 + /)�


*
! − 10
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and B2’  into 

E1 + F1 + ���
��
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�/! − �
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H
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*
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! .        (24) 25 

In the supplementary material (S3) we show that the original Turc-Mezentsev functions are the solutions of these 

transcendental equations.  

For every value of λ and Φ, a unique value of α0 can be calculated by means of Eq. (22), αw being fixed. In this equation α0 = 

f(λ, Φ), Φ represents climate aridity and λ catchments characteristics in relation to its ability to evaporate (the greater λ, the 

higher its evaporation capability). The Priestley-Taylor coefficient α0 appears to be an increasing function of Φ and a 30 

decreasing function of λ. Fig. 5a shows the relationship between α0 and λ for different values of Φ. α0 tends to 2αw when λ 
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tends to zero (non-evaporative catchment) whatever the value of Φ. When λ tends to infinity (i.e. very evaporating 

catchment), the limit of α0 depends on the value of Φ. For Φ ⩽ 1 the limit is αw and for Φ > 1 the limit is the branch of the 

hyperbole 2αwΦ/(1+Φ). Fig. 5b shows the relationship between α0 and Φ for different values of λ. When Φ tends to +∞ 

(very arid catchment), the coefficient α0 tends to 2αw. When Φ tends to 0 (very humid catchment), α0 tends to αw. These 

results illustrate the simple functional relationship existing between the Priestley-Taylor coefficient, the TB shape parameter 5 

and the aridity index. Similar results are obtained when the Fu-Zhang formulation is used, as detailed in the supplementary 

material S4.  

5 Summary and conclusion  

The TB curves have two different and equivalent dimensionless expressions: B1 where E/P is a function of the aridity index 

Φp = Ep/P, and B2 where E/Ep is a function of Φp
-1 = P/Ep; any B1 curve can be transformed into an equivalent B2 curve and 10 

conversely. Among various TB type curves, the Turc-Mezentsev one (Eq. 4) with the shape parameter λ was chosen because 

it is commonly used and has the remarkable property of having the same mathematical expression in both representations B1 

or B2. Using Penman’s equation (Eq. 2) to express potential evaporation and introducing the complementary evaporation 

relationship in the form of the Advection-Aridity model with its parameter αw (Eqs. 6 and 7), it was shown that the 

dimensionless drying power of the air D = Ea/Ep expressed as a function of Φp
-1 has upper and lower boundaries and that 15 

there is a functional correspondence between the TB and D curves. Next, we examined the case where potential evaporation 

is expressed by the Priestley-Taylor equation (E0 given by Eq. 3) with a varying coefficient α0 instead of the sounder 

Penman’s equation. Introducing the CE relationship in the form of the Advection-Aridity model shows that the Turc-

Mezentsev function linking E/P to Φp = Ep/P (Eq. 4) transforms into a new transcendental form of the Turc-Budyko function 

B1’  linking E/P to Φ0 = E0/P (Eq. 20), only numerically resolvable. The Priestley-Taylor coefficient α0 should have a 20 

specified value as a function of αw, λ and Φ0 = Φp so that the two curves B1 and B1’ be equivalent. This means that the 

coefficient α0 (αw ⩽ α0 ⩽ 2αw) is intrinsically linked to the shape parameter λ of the Turc-Mezentsev function and to the 

aridity index. 

6 List of symbols 

B1 function linking E/P to Φp = Ep/P. 25 

B1’  function linking E/P to Φ0  = E0/P given by Eq. (20). 

B2 function linking E/EP to Φp
-1 = P/Ep. 

B2’  function linking E/E0 to Φ0
-1  = P/E0 given by Eq. (21). 

D function linking Ea/Ep to P/Ep. 
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D*  difference between the upper and lower boundaries of D [-]. 

d* maximum difference between the Turc-Budyko curve and its upper limit [-]. 

E actual evaporation [LT-1]. 

Ep potential evaporation expressed by Penman’s equation [LT-1]. 

E0 potential evaporation expressed by Priestley-Taylor equation [LT-1]. 5 

Ew wet environment evaporation in the CE relationship [LT -1]. 

P precipitation [LT-1]. 

Ea  drying power of the air [LT-1]. 

Ea,n1 lower limit of Ea given by Eq. (12) [LT-1]. 

Ea,n2 lower limit of Ea given by Eq. (13) [LT-1]. 10 

Ea,x upper limit of Ea given by Eq. (11) [LT-1]. 

Rn  net radiation [LT-1]. 

α0  coefficient of the Priestley-Taylor equation [-]. 

αw  =1.26 [-]. 

γ  psychrometric constant  [M L-1T-2 °C-1]. 15 

∆  slope of the saturated vapour pressure curve at air temperature [M L-1T-2 °C-1]. 

δ*  maximum difference between the Ea/Ep curve and its lower boundary [-]. 

λ shape parameter of the Turc-Mezentsev equation (λ > 0) [-]. 

Φ0 aridity index calculated with E0 (Φ0 = E0/P) [-]. 

Φp aridity index calculated with Ep (Φp = Ep/P) [-]. 20 
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Figure 1: The Turc-Mezentsev relationship Eq. (4) between the ratio E/P and the aridity index ΦΦΦΦp = Ep/P for four values of the 
parameter λλλλ    (0.3, 0.5, 1 and 3). The bold line indicates the upper limit of the feasible domain. 10 

 

 

 

Figure 2: Correspondence between the two forms of the Turc-Mezentsev functions (E/P = B1(ΦΦΦΦp), given by Eq. (4) and E/Ep = 
B2(ΦΦΦΦp

-1)  given by Eq. (5)) and the function defining the drying power of the air Ea/Ep = D(ΦΦΦΦp
-1) given by Eq. (10). The calculations 15 

are made with a shape parameter λλλλ = 1 and a temperature of 15°C: Ea,x/Ep = 1.59, Ea,n2/Ep= 0.54, d* = 0.50, D* = 1.05 and δδδδ* = 0.52. 
The bold lines indicate the upper limit of the feasible domain. 
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Figure 3: Comparison between the Turc-Mezentsev function B1(ΦΦΦΦp) (Eq. 4) in solid line and its corresponding function B1’(ΦΦΦΦ0) 
(Eq. 20) in dotted line for two values of λλλλ (0.5 and 2):  (a) with αααα0 = ααααw = 1.26; (b) with α0 adjusted according to Eq. (22) for ΦΦΦΦ  = 1. 
The x-axis legend ΦΦΦΦ represents either ΦΦΦΦp for B1(ΦΦΦΦp) or ΦΦΦΦ0000 for B1’(ΦΦΦΦ0). 

 5 

 

Figure 4: Comparison of functions E/P = B1’(ΦΦΦΦ0) (Eq. 20) and E/E0 = B2’(ΦΦΦΦ0
-1) (Eq. 21) for two different values of the shape 

parameter λ (0.5 and 2) and the same value of α0  = 1.26. 
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Figure 5: Variation of the Priestley-Taylor coefficient α0: (a) as a function of the aridity index ΦΦΦΦ for different values of the shape 
parameter λ of the Turc-Mezentsev function; (b) as a function of λλλλ for different values of the aridity index ΦΦΦΦ (Eq. (22) with αw = 
1.26). The bold lines indicate the upper and lower limits of the feasible domain. 

 5 
 

Table 1: Different expressions for the Turc-Budyko curves as a function of the aridity index ΦΦΦΦp. 

Equation Reference 

�/I � 3��tanh	� 1�	�F1 + exp	�+�	�G4
�/�

 
Budyko (1974) 

�/I � �	 �1 � ��	�!	#�
�$
 

Turc (1954) with λ = 2, Mezentsev (1955), Yang et al. (2008) 

 

�/I � 1 � �	 + �1 � ��	�Q	#
�R
 

Fu (1981), Zhang et al. (2004) 

 

�/I � 1 � S�	
1 � S�	 ��	
� 

Zhang et al. (2001) 

�/I � �	 2 T
1 � T�	�5

�/�
 

Zhou et al. (2015) 
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